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EXPERIMENTAL INVESTIGATION OF NONSTATIONARY HEAT TRANSFER IN 

A POROUS LAYER WITH A LIQUID PERCOLATING IN THE LAYER 

V. A. Mukhin and N. N. Smirnova UDC 536.242 

The solution of problems involving heat and mass transfer in porous layers is disting- 
uished by great complexity. This complexity stems from the hydrodynamic and thermal inter- 
action of the percolating flow with the medium fillimg the layer and with the surrounding 
mass (or channel walls). 

At the present time, several approaches are available for solving such problems. A 
widely used raodel of such a flow is one in which it is assumed that the thermal resistance of 
the solid particles that make up the layer is small, i.e., a certain homogeneous medium is 
examined in ~ich the actual characteristics of a nonuniform medium are replaced by equivalent 
characteristics. Such a model of the flow is used in [1-3] and in other studies. In another 
approach [4, 8], the thermal resistance of the elements of the layer is taken into account 
and the basic: equations become integrodifferential equations. These equations are solved in 
terms of series and complicated integrals. Calculations based on the solutions obtained in 
complicated physical situations become difficult. 

Recently, a solution has been proposed for this problem involving a nonstationary 
temperature field in a porous stratum based on reduction of the integrodifferential equation 
to an equivalent heat conduction equation [5]. 

The purpose of the present work is to check different theories and the equivalent heat 
conduction equation method. 

An experimental setup was prepared for studying nonstationary heat exchange with perco- 
lation of a liquid in a porous medium. The basic element of the setup was a cylindrically- 
shaped tank with a diameter of 0.6 m and height 0.6 m with a removable cover. The tank was 
filled with small glass spherules with various diameters. In order to establish uniform 
percolation, a parallelepiped was separated out in the center of the volume with length, 
width, and height dimensions equal to 0.3, 0.42, and 0.44 m, respectively. The volume that 
was separated out was isolated from the surrounding mass from below, above, and on all sides 
with the help of a thin sheet of vinyl plastic, which is a material that has a low thermal 
conductivity. A fluid was introduced into one side of the isolated volume and removed from 
the other side. The liquid was introduced through perforated pipes with diameter d = 10 -2 m 
with a long perforated part equal to the height of the isolated volume. These pipes were 
distributed uniformly over the entire depth of the inlet and outlet cross sections with a 
step of 5o10 -= m. The perforated pipes were connected with collectors outside the isolated 
volume. A frame containing 25 nichrome--constantan thermocouples (five rows distributed over 
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Ic~3/ 
Form of fill ; rain 

Glass spherules 
d:-:3,2, iO -3 m o 
~=5600 mZ/m ~ 

Glass sphemles 
d = 19. I0 -s m 
o = ~ 9 0 .  n/~Im ~ 

3000 
2030 

3000 
2030 

0,95 
0,65 

0,95 
0,65 

m/h 

3,8 
2,6 

2,7 
t,9 

C ~ 

5,0 
t0,0 

t l ,0 
8,0 

C' ( i '  

17 I 22 
tO 20 

24 35 
25 33 

TABLE 2 

Bi ~ ~2 ~ Jz~ ~8 H~ 

0,05 
O,i 
i,5 
2 

10 
iOi 

0,3854 
0,5425 
i,8366 
2,0278 
2,8363 
3,ii05 

4,5045 
4,5157 
4,8i58 
4,9132 
6,7172 
6,22ii 

7,73i7 
7,7382 
7,9t7t 
7,9787 
8,6587 
9,3317 

10,9087 
10,9i33 
fi,0409 
ti,0856 
1i,6532 
12,4426 

i4,0697 
i4,07t3 
i4,i724 
i4,2075 
i4,6870 
t5,5537 

i8,665() 
17,2266 
17,3076 
t7,3364 
i7,748i 
i8,6650 

Note. ~n are the roots of the characteristic equation tg ~n = 

--~n/(Bi -- i). 

the height with five thermocouples in each row) was placed in the center of the vertical plane 
inside the volume being studied. The distance between the thermocouples both along the 
height of the layer as well as along the flow equalled 5.5.10 -2 m. The thermocouples were 
made out of wires with diameters of i00 ~mo The size of the thermocouple beads was 150 ~m. 
The thermocouples exited the tank between two rubber layers under the tank cover. The temper- 
ature at the inlet was measured by two thermocouples d T = 200 ~m, placed in the inlet pipe. 
The inlet pipe was externally insulated by string asbestos. The circuit for measuring the 
emf of the thermocouples includes the following: a manual switch, electronic F-30ampere 
voltmeter, a F-30-50 transcriber, a F-30-K coupling block, and a digital printing device. 
This system permitted fixing the indications of the thermocouple after desirable time inter- 
vals depending on the rate at which the temperature was measured. The fill consisted of two 
types of glass spherules. The properties of the fill and the basic characteristics of the 
experiments are presented in Table i. 

At first, water with constant temperature was pumped through the entire setup until the 
temperature was uniform over the entire fill volume. Then, an electric heater was turned on, 
but the hot water was discharged bypassing the setup. After a stationary regime was achieved, 
the F-30-K measuring system was switched on, the shutoff valve was opened, and the hot water 

was introduced into the setup. 

The experiments were carried out for different fluid flow rates and temperature heads. 
For high fluid flow rates and low temperature heads, all the thermocouples located along a 
single vertical line indicated the same temperature. When the flow rate of the fluid was 
decreased and the initial temperature head increased, the temperature along the height of 
the layer changed, which is related, evidently, to the appearance of free convection flows. 
In order to make comparisons with computational methods, only experiments in which free 
convection flows were absent were chosen (presented in Table i). In order to analyze the 
nature of the temperaturechange with time, we used the indications of the thermocouples 
located at distances 0.08, 0.135, and 0.3 m from the fluid inlet into the volume being 

studied. 

In order to compare the experimental results with theory, we used the expression obtained 
based on the solution of the equivalent heat conduction equation [5], when boundary conditions 
of the third kind are satisfied on the surface of a fill element: 

0---- i - - - f  e r i c [  ~ + e r i c [  2 V B ~  ' (i) 
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where 

G =  _ _  

A - - - - ~  ( - - l ) ~ +  1 

B = ~ (-- t) n+~ 
n = l  

Bespfcf  O t - -  T O 

9bC b ' t O -- TO~ 

2Bi5 V ~ ~- (Bi I) 5 sin 

( 4  + _ Bi) 4 
2Bi5 V 5 ~n -f" (Bi - -  t) 5 sin ~n 

(4  + Bi5 _ , i )  4 
aT ax 

F o = F o - - X ;  . F  o = - ~ ;  X =  
BSUe ' 

to--To~is the initial temperature difference; u e is the effective velocity of the fluid; R is 
the radius of a spherule; Pb, and C b are the density and heat capacity of the fluid; pf, Cf, 
and af are t:he density, heat capacity, and coefficient of thermal diffusivity of the fill; 
o is the surface area of the particles per unit volume of fluid; Bi = 2~R/Xf; ~ is the heat 
transfer coefficient; Xf is the coefficient of thermal conductivity of the fill. The values 
of the coefficients ~n are presented in Table 2. 

In order to calculate the coefficients of heat transfer to the particles, we used the 
function [7] 

N u  = 0.5 + 0.068 Re~Pr, N u , =  ad/;~ b, Rer = ue d/%, Pr  = v/a b. 

It was shown in [5] that the solution of the equivalent heat conduction equation coin- 
cides exactly, in the range of Bi and GX studied, with the results of the exact solution ob- 
tained in [4, 6]. For this reason, based on a comparison between experiment and calculations 
carried out using Eq. (i), we can judge the correctness of the so-called exact formulation~ 
Figure 1 shows the results of a comparison of experiment with calculations (solid line) 
based on the equivalent heat conduction equation. The results of the experiment are analyzed 
in terms of the coordinates @ -- Fo with the parameter GX. 

The conditions for carrying out the experiments in Fig. 1 were as follows: a) uf = 95 
m/h, u e = 3~ m/h, d r = 3.2.10 -3 m, GX = 47 for point I, GX = 80 for point 2, and GX = 140 
for point 3; b) uf = 0.95 m/h, u e = 2.7 m/h, d r = 19-10 -3 m, GX = 1.2 for point i, GX = 2.0 
for point 2, and GX = 3.5 for point 3; c) uf = 0.38 m/h, u e = i.i m/h, d r = 19.10 -~ m, GX = 
3.0 for point i, GX = 5.0 for point 2, and GX = 8.6 for point 3. It is evident that Eq~ (i) 
with the use of boundary conditions of the third kind agrees satisfactorily, within the limits 
of its applicability, with the experimental data~ 

We will compare the experimental data with the Klinkenberg's equation 

539 



I (v @ =  y t - -  erfc ~ _L 8V----Z-- 8 V Y  

where 

Z = CZaX/PiClUl; I z = aT/p2C,,trl. 

It is well known that (2) approximates Shuman and Antselius' solution for Z ~I.0 and Y ~2.0 
to within 0.6% [9]. The results of the calculation based on Eq. (2) are presented in Fig. 
2 (dashed lines with cross marks); the results of the calculation using the homogeneous model 
are shown here as wello If it is assumed that the temperature of the fluid and solid phases 
equalize instantaneously, then the energy equation can be written in the form [i0] 

6o0010~ § C~p~uOO/Ox = ZoO"OtOxL 

where the coefficients Co and Xo, called effective coefficients, are determined from the 
following equations: 

Co = plClm -t- p~C~.(l - -  m), X o = }wn @ %~(1 - - m ) .  (3) 

The boundary conditions have the form 

0----- t ,  x = O ,  ~ > 0 ,  @ = 0 ,  �9 = 0 ,  x > O . .  

Using the solution of the differential equation (4) presented in [ii], it is possible to ob- 
tain for the homogeneous heat exchange model 

I ClPlZ~ li 

/ ClOlt/" \ x i "-I- C--~ t 
, 

Since all experimental data were obtained for values Re < i0, in this case, the coefficient 
of longitudinal thermal conductivity can be calculated according to the equation [12] 

~,eff= 1,5 ~-o. (4)  

The following notation is used in Fig. 2: the dashed and dot-dash lines indicate the results 
of a calculation using the homogeneous model for the case when the thermal conductivity is 
determined from Eqs. (3) and (4), respectively; the solid lines indicate the results of a 
calculation using the equivalent equation; the numerals I-III correspond to calculations for 
the conditions of experiments 1-3; and the remaining notation is the same as in Fig. i. It is 
evident from Fig. 2 that taking into account longitudinal dispersion and determining Xeff from 
Eq. (4) results in better agreement between the calculations based on the homogeneous model 
and the experimental result, but do not change significantly the overall picture and the 
fact that flow models (of the Shuman type),, in which the thermal resistance of the solid 
material is not taken into account, agree poorly with the experimental data for a given heat 
transfer coefficient. Of course, choosing the magnitudes of the coefficient in Shuman's 
equation it is possible to make the calculations coincide with some of the experimental 
curves, but then, this coefficient will no longer have the meaning of a heat transfer coeffi- 
cient, determined by classical methods. The basic role in heat exchange with small perco- 
lation rates in a porous medium consisting of large elements is played by the effect of 
thermal resistance from the side of the liquid and the elements of the medium. This can be 
seen in Fig. 2. Comparing the different curves, we see that by decreasing the permeability 
of the medium (which is proportional to ~d 2) and increasing the percolation rate, the influ- 
ence of the thermal resistance from the side of the liquid decreases. For high percolation 
rates, the effective longitudinal heat capacity will play the main role. In this case, 
apparently, it is possible to use, in the case of a fill consisting of monodispersed material 
with good conduction the homogeneous heat exchange model with thermal conductivity coeffici- 
ents that depend on the percolation rate of the heat carrier and the sizes of the elements 
of the medium. In Fig. 2, it is evident that in some cases, some deviation of our experi- 
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Fig. 2 

mental results from the curves computed using the equivalent equation is observed. This can 
be related to the absence of a term with longitudinal effective diffusion in the equation. 
Apparently, in some cases, longitudinal diffusion can have a much greater effect on the 
spreading of the temperature front, than the effect of the thermal resistance of the 
structural elements of the porous medium. 

Thus, it: has been shown in the present work that in the range of characteristic param- 
eters investigated here, the nature of the change of the temperature field in a porous layer 
can be best calculated using an equivalent heat conduction equation~ in which the coefficients 
correspond to boundary conditions of the third kind. Taking into account the longitudinal 
thermal conductivity of the layer can lead to even better agreement between theory and experi- 
ment for large Reynolds numbers (Re r > 200). 

LITERATURE CITED 

i. H. A. Lauverrie, "The transport of heat in oil layer caused by the injection of hot 
fluid," Applied Scientific Research, Section A, ~, Nos. 2-3 (1955). 

2. M. A. Pudovkin, V. A. Chugunov, and A. N. Salamatin, Problems in Heat Exchange Applied 
to the Theory of Drilling Wells [in Russian], Kazansk. un-ta, Kazan' (1977). 

3. N. A. Avdonin, "Different methods for calculating the temperature field in a stratum 
with heat injection," Izv. Vyssh. Ucheb. Zaved. Neft' Gas, No. 8 (1964). 

4. V. A. Remanov and N~ N. Smirnova, "Heat exchange with induced convection in a weakly 

permeable medium," Inzh.-Fiz. Zh., 33, No. 2 (1977). 

541 



5. N. N. Smirnova, "Solution of equations of heat transfer in the presence of percolation 
by reducing the system to an equivalent equation of heat conduction" in: Physical Hydro- 
dynamics and Heat Exchange [in Russian], edited by S. S. Kutateladze, Inst. Termofiz. Sib. 
Otd. Akad. Nauk SSSR, Novosibirsk (1978). 

6. E. S. Romm, "A case of heat transfer in fissured rock" in: Problems in Developing 
Mineral Ore Deposits in the North [in Russian], Leningr. Gos. Univ., Leningrad (1972)~ 

7. Kenji Hashimoto, Noboru Suzuki, Masaaki Teramoto, and Shinji Nagata, "Heat transfer 
in a packed bed," KAGAGU KOKGAKU, ~, No. 1 (1966). 

8. G.N. Ivantsov and B. Ya. Lobov, "Heating of a stationary layer of spheres with a hot 
gas flow," Dokl. Akad. Nauk SSSR, 136, No. 2 (1952). 

9. B. I. Kitaev, Heat and Mass Transfer in a Dense Layer [in Russian], Metallurgiya, 
Moscow (1970). 

i0. L. N. Rubinshtein, Temperature Field in Oil Strata [in Russian], Nedra, Moscow (1972). 
ii. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press (1959). 
12. M. E. A~rov and O. M. Todes, Hydraulic and Heat Foundations of the Operation of Equip- 

ment with a Stationary and Boiling Granular Bed [in Russian], Khimiya, Leningrad (1968). 

CAPILLARY PE~ATION OF HYDROPHOBIC OIL-SATURATED ROCKS 

BY A SOLUTION OF AN ACTIVE ADMIXTURE 

V. M. Entov and N. Shyganakov UDC 532o685 

It is well known (see, e.g., [1-3]) that capillary permeation plays an important role in 
extracting oil from heterogeneous (layered-nonuniform, fractured-porous, and so on) strata. 
As a result of capillary permeation, water penetrates to the less permeable parts of the 
stratum, in which oil turns out not to have been displaced by frontal flooding. This mechan- 
ism assumes that water has better wetting ability than oil (i.e. the rocks are hydrophilic), 
and for this reason, under conditions of capillary balance, water predominately fills regions 
with small pores. In a number of cases, the rocks turn out to be hydrophobic as a result of 
adsorbing active components in oil on their surfaces and the process of capillary permeation 
cannot proceed, which decreases the oil recovery from the stratum. 

One of the means for increasing oil recovery in such cases is adding surfactants to the 
water that is pumped in [4, 5], which, being adsorbed on the surface of the porous framework, 
make the surface hydrophilic. Since the process of making the surface hydrophilic must precede 
permeation, the surfactant must be soluble to some extent (even a small extent) in oil. 

In the present work, we examine the simplest description of such a permeation process for 
an initially hydrophobic rock by a water solution of an active admixture that makes the rock 
hydrophilic. This case differs from the previously examined [6] problem of counterflow 
capillary permeation of a porous medium by a solution of an active admixture by the fact that 
it is necessary to take into account the solubility of the active admixture in oil and the 
change in the sign of the capillary pressure (the medium becomes hydrophilic); as will be 
evident from the results, the permeation rate in the case being examined depends in a charac- 
teristic way on the rate of the diffusion of the active admixture. 

i. We will write the equations for two-phase flow in aporous medium in the presence of 
an active admixture, assuming that local conditions for thermodynamic equilibrium between the 
admixture dissolved in water and in oil and that adsorbed by the porous medium are satisfied: 

ms, t  q-  div  ul  = O, d iv(u l  ~ u2) = O; ( 1 . 1 )  

[mcis  + m(l  -- s)c 2 + a], t 4- div (ciu i + c~u~) + d iv  q = 0; (1.2) 

cl = c, c~ = W(c), a = a(c, s), q = - - D v c ,  D = O(c ,  s); (i. 3) 
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